
26 BETTER SOFTWARE APRIL 2005 www.StickyMinds.com

www.StickyMinds.com APRIL 2005 BETTER SOFTWARE 27

Follow a programmer as he
walks through an example of
how injecting a dependency
into a design idea can keep
you from getting stuck.

by J. B. Rainsberger

The term dependency injection has at-
tained buzzword status within the pro-
gramming community. As with any idea
that gains so much visibility so quickly, it
has its detractors—mainly those who
fear the idea will become another golden
hammer. Their fears are well founded, as
we saw with the book Design Patterns.
(see Sticky Notes for reference). Shortly
after it appeared, programmers began
writing systems riddled with global data,
claiming to be improving the design with
the Singleton pattern. These program-
mers likely skimmed the pattern descrip-
tion, failed to read about the drawbacks,
and then went merrily on their way. One
way to avoid repeating this pattern is
to see a variety of both good and bad
examples of how to apply a design
idea. I would like to contribute to this
cause by presenting an example of how
to improve the testability of a design
by injecting a dependency.

Suppose we are building a website to ri-
val PayPal.com by providing a better elec-
tronic funds transfer service. Naturally,
our site is transferbuddy.biz, taking full
advantage of one of the cool new top-lev-
el domains. Before we can hope to com-
pete with the big players in this market
space, we need to implement a simple
transfer of funds between members of
our site. I start by test-driving a basic
transfer feature, resulting in these tests:

■ The Happy Path: The sender has enough
funds to cover a transfer to the receiver.

■ The sender transfers his entire balance
to the receiver, which we allow.

■ The sender has insufficient funds to
cover the transfer, so it fails.

■ The sender attempts to transfer $0,
which we disallow.

■ The sender attempts to transfer funds
to himself, which we disallow.

Each of the tests follows a similar
rhythm: create a sender and receiver,
execute the transfer, check the receipt,
then verify the sender’s and receiver’s

The test above merely wants to check
the fee amount, but that requires creating
a FundsTransfer object. To do this, I
have to supply the sending party, the receiv-
ing party, and the amount of the transfer,
even though the sender and receiver have
no bearing on how the fee is calculated.
These irrelevant objects make the test
unnecessarily complex. Using them in the
other fee calculation tests makes it worse:
duplicate irrelevant details. The tests are
longer, slower, and involve more concepts
than they need, creating several kinds of
waste: extra time to write the tests, extra
time to execute them, extra difficulty in
understanding them, and extra mainte-
nance work when things change. So what
can I do? I could move calculate-
Fee() onto its own production class, but
that seems to create unnecessary complex-
ity. We would have two production classes
where one ought to suffice. If I make that
change, would I merely be trading one set
of problems for another? Unsure exactly
how to proceed, I start by removing dupli-
cation in the test, hiding the sender and
receiver behind the method calculate-
Fee(amount). You can see the resulting
tests in Listing 2. This is an improvement,
but I can’t help but feel that I could do
better. Once I have more information
about how to improve the design of the
production code, I’ll do it. I know I usual-
ly get that information by writing addi-
tional tests, so I’ll move on.

Now that we can calculate our trans-
action fee, we need to apply it to the

balance. (Amounts are in Canadian dol-
lars only, for now. We’ll tackle multiple
currencies later.) The receipt indicates
either a successful transfer or a denial
of the request, including the specific
reason. After checking the receipt, the
test verifies that the money has (or has
not) changed hands. You can find a few
of these tests in Listing 1.

As nice as it is to have completed our
first feature, transferbuddy.biz is in busi-
ness to turn a profit, so the next impor-
tant feature is obvious: We need to collect
a fee for each funds transfer. Our crack fi-
nancial analysis department has identified
a fairly simple scheme: Receiving funds is
free, but sending funds costs $2 plus 2.9
percent of the value of the transaction.
Returning to our Happy Path test, the
fee for the successful transfer comes to
$4.90 on the $100 transfer. I test-drive
this feature, adding a method named
calculateFee() to the class Fund-
sTransfer. I write three tests, calculating
the fee on a $0 transfer, a $1,000 transfer,
and amounts such as $157.41 and
$157.42 that force me to round down
and up, respectively. As I write these
tests, I feel a familiar twinge that usually
indicates the onset of a design problem.
It has to do with the choice of putting
the method calculateFee() on the
class FundsTransfer.

What triggers my vague uneasiness is
being forced to deal with irrelevant de-
tails when writing these tests. Following
is an example:

Test Example
What triggers my vague uneasiness is being forced to deal with irrelevant details when
writing these tests. Following is an example:
public class CalculateTransferFeeTest extends TestCase {

public void testNiceRoundFigure() throws Exception {

Member sender = new Member(“jbrains”, new BigDecimal(“1000.00”));

Member receiver = new Member(“sarah”, new BigDecimal(“250.00”));

FundsTransfer fundsTransfer = new FundsTransfer(

sender, receiver, new BigDecimal(“1000.00”));

BigDecimal actualFee = fundsTransfer.calculateFee();

assertEquals(new BigDecimal(“31.00”), actualFee);

}

}

28 BETTER SOFTWARE APRIL 2005 www.StickyMinds.com

Feature

www.StickyMinds.com APRIL 2005 BETTER SOFTWARE 29

funds transfer, at least in those cases
where the transfer completes successfully.
I suppose it would be easy to change the
existing tests for our funds transfer to
take the transaction fee into account. I
start by changing the Happy Path test:
The transaction fee is $4.90 on a transfer
of $100, so the sender should end up
with $895.10, rather than $900. I change
the test, watch it fail, then add the code
to make it pass. In doing so, the Happy
Path test passes, but another one fails—
the one where the sender attempts to
transfer all his money. The failure message
was most unexpected.

expected <0.00> but was <-31.00>

After all my work to avoid the
sender’s going into the red, it happened
anyway. The logic has become more
complicated. Now I have to check in
advance that the sender has enough
money to cover both the transfer and
the resulting fee. First, I have to change
testTransferEntireBalance(),
which should expect the transfer now to
be denied; then I have to change the
code to reflect that fact. After what feels
like an eternity (at least three minutes)
the comforting green bar returns. In
spite of my contentment at seeing the
tests pass at 100 percent, I am discour-
aged by a few observations about the

entire balance (leaving enough money
to pay the fee), but the exact amount I
would need to transfer depends on the
transaction fee, so every time the fee
rule changes… well, I’d rather not
think about it.

This seems to me to be the kind of
ripple effect that object-oriented design
techniques are meant to help me avoid.
Even though the production code design
looks simple, in the span of a relatively
short programming session, the tests
have become unnecessarily complex and
brittle. In a simple design, dependencies
are explicit and obvious, so we can be
aware of the impact of changes. The
current design hides the fixed dependen-
cy between two separate business rules,
and hidden dependencies make it difficult
to understand the impact of changes. In
this case, a change to the transaction fee
scheme requires changes in two different
kinds of tests: the ones calculating the fee
(that makes sense) and the ones transfer-
ring the funds (that surprises me). Is there
no limit to how much damage a program-
mer can do in such a short space of time?
Apparently not, but there is good news: I
have tests, so I can improve the design
with confidence. It’s time to refactor.

First, I’d like to handle the unnecessary
complexity of the tests that calculate the
transaction fee. I mentioned hiding some
irrelevant details behind a method called
calculateFee(amount) in the test class. This
new method is considerably easier to use
than the existing production code, a con-
clusion that prompts me to ask myself,
Why isn’t the production code that simple?
To fix the problem, I create a new class,
FundsTransferFeeRule, and move
calculateFee() there. (See Listing 3,
which shows some “before and after”
code.) This simplifies the tests considerably,
removing the need to create objects for the
sender and receiver of the transfer. It almost
makes the tests too easy, which I have
learned to interpret as a sign that the de-
sign is heading in the right direction. This
takes care of calculating the fee, but
charging the fee still disrupts the tests for
performing a simple transfer. This is the
point where dependency injection enters
the scene.

difference between the code now and
the code a few minutes ago.

1. Changing the sender’s ending balance
in the Happy Path test was easy enough,
but the changes to the “transfer entire bal-
ance” test were sweeping, to say the least.

2. Tomorrow, when our financial analy-
sis department decides on a different
transaction fee scheme, I will have to
change the sender’s ending balance in
testHappyPath(). Worse, every time
the scheme changes, I will have to change
both the transfer-processing tests and the
fee-calculating tests.

3. Next week, when our financial analysis
department cancels the transaction fee
scheme, opting instead for a regular
membership fee and revenue from banner
advertising, I will have to change all the
transfer-processing tests back to the way
they looked before we ever had transac-
tion fees.

4. One of our useful boundary tests—
trying to transfer the entire sender’s
balance—has effectively disappeared
because that test now expects the trans-
fer to fail. I suppose I could replace that
test with one that actually transfers the

FundsTransferFeeRuleFundsTrans-
ferexecute()FundsTransfer-
FeeRuleFundsTransferexecute()Fun
dsTransferFeeRuleFundsTransfer-
execute()FundsTransferFund-
sTransferFeeRuleFundsTransferex-
ecute()FundFundsTransferFeeRuleF
undsTransferexecute()FundsTrans-
ferFeeRuleFundsTransferexe-
cute()FundsTransferFeeRuleFund-
sTransferexecute()FundsTransferF
undsTransferFeeRuleFundsTrans-
ferexecute()FundFundsTransfer-
FeeRuleFundsTransferexecute()Fun
dsTransferFeeRuleFundsTransfer-
execute()FundsTransferFeeRule-
FundsTransferexecute()Fund-
sTransferFundsTransferFeeRuleFun
dsTransferexecute()FundFund-
sTransferFeeRuleFundsTransferex-
ecute()FundsTransferFeeRuleFund-
sTransferexecute()FundsTransferF

www.StickyMinds.com APRIL 2005 BETTER SOFTWARE 30

Looking again at the tests, they are
brittle. When the fee calculation scheme
changes, I have to change the tests related
to transferring money rather than just the
ones related to calculating the fee. It would
be nice if the transfer tests could ignore
charging the transaction fee, as that would
make the tests more resilient to irrelevant
changes in the production code. Imagine if
I could change FundsTransfer to use
any fee-calculating rule I wanted rather
than only the implementation provided by
FundsTransferFeeRule. I could have

the basic transfer tests use a fake fee rule
that charges $0 per transaction. On the
other hand, some tests still need to verify
that the fee is properly charged, so they
need to use a fee rule that charges some-
thing, even if it’s only a flat rate. How can I
have some tests use the $0 fee rule and
other tests use, say, a $10 flat rate fee rule?
First, I’d need a generic fee rule, so I extract
the interface FeeRule from Fund-
sTransferFeeRule. I can implement
this interface differently for each test if I
need to. Now I can let the tests, and not
the FundsTransfer object, decide what
kind of fee rule to use, by injecting the
FeeRule into the FundsTransfer,
rather than allowing it to instantiate the
FeeRule itself. This is really just a fancy
term for providing the FeeRule as a param-
eter to FundsTransfer, turning a hard-
coded dependency into a more flexible
one. This is the essence of dependency in-
jection: Objects depend on each other
without locking themselves into each other.

So what kind of parameter should the
fee rule object be? There are three funda-
mental ways to inject a dependency:
method injection, constructor injection,
and setter injection. Listing 4 gives you an
idea of how the code would change with
each of these techniques, discussed by
Michael Feathers in his book, Working

the fee-calculating tests need to change.
Dependency injection has helped me
make that happen.

Still, when I look at the result,
FundsTransfer has to concern itself
with too many things: determining
whether the transfer is valid, calculating
the transaction fee, determining whether
the sender can afford to complete the
transaction, then actually moving the
money around. Although the design is eas-
ier to test, I have that nagging feeling that
I’m not finished. That’s all right because

the design is adequate—maybe even
good—for the current needs of the system.
Tomorrow, when I’m asked to add more

kinds of transactions to the system, I’ll
have more information to use to improve
the design. Until then, I think I’ll just call it
a day. {end}

J. B. (Joe) Rainsberger is the founder of
Diaspar Software Services
(http://www.diasparsoftware.com), an
author, speaker, programmer, teacher,
mentor, and host to agile developers
from around the world.

Effectively with Legacy Code. (See Sticky
Notes for reference). It might seem strange
to apply a legacy code technique to fea-
tures we are test-driving, but that serves
only to drive home an important point
about design: A failure to attend to design
problems as they emerge equates to writ-
ing legacy code for yourself. Our collective
experience maintaining ill-designed systems
ought to be enough to justify investing time
now to avoid serious problems later. If
there’s one thing you are going to need, it’s
a flexible, testable design.

Of the options in Listing 4, I choose
method injection. The method execute()
is the only part of FundsTransfer

that needs a FeeRule, so it should be
the only part that gets one. (See Dia-
gram 1.) I’m following a design princi-
ple that recommends keeping the scope
of variables as narrow as possible. As
the design evolves, if more methods
need to use the FeeRule, I might pro-
mote it from a method parameter to a
field, at which point I would have to
choose between constructor and setter
injection. I’ll make that decision when
the time comes. With this revised design,
I have achieved my goal: The next time I
change the fee calculation rule, only

Is there no limit to how much
damage a programmer can do
in such a short space of time?

Diagram 1: Injecting the dependency

31 BETTER SOFTWARE APRIL 2005 www.StickyMinds.com

[public class SimpleTransferTest extends TestCase {

private Member sender;

private Member receiver;

protected void setUp() throws Exception {

sender = new Member(“jbrains”, new BigDecimal(“1000.00”));

receiver = new Member(“sarah”, new BigDecimal(“250.00”));

}

public void testHappyPath() throws Exception {

Receipt receipt = executeFundsTransfer(sender, receiver,

new BigDecimal(“100.00”));

assertTrue(receipt.showsRequestCompleted());

assertEquals(new BigDecimal(“900.00”), sender.getBalance());

assertEquals(new BigDecimal(“350.00”), receiver.getBalance());

}

public void testTransferEntireBalance() throws Exception {

Receipt receipt = executeFundsTransfer(sender, receiver,

new BigDecimal(“1000.00”));

assertTrue(receipt.showsRequestCompleted());

assertEquals(new BigDecimal(“0.00”), sender.getBalance());

assertEquals(new BigDecimal(“1250.00”), receiver.getBalance());

}

public void testInsufficientFunds() throws Exception {

Receipt receipt = executeFundsTransfer(sender, receiver,

new BigDecimal(“1000.01”));

assertTrue(receipt.showsRequestDenied());

assertEquals(RequestDeniedReceipt.forInsufficientFunds(), receipt);

assertBalancesUnchanged();

}

private Receipt executeFundsTransfer(Member sender, Member receiver,

BigDecimal amount) {

FundsTransfer fundsTransfer = new FundsTransfer(sender, receiver,

amount);

return fundsTransfer.execute();

}

private void assertBalancesUnchanged() {

assertEquals(new BigDecimal(“1000.00”), sender.getBalance());

assertEquals(new BigDecimal(“250.00”), receiver.getBalance());

}

}

Snippet 1: The test knows more than it needs to

public class CalculateTransferFeeTest extends TestCase {

public void testNiceRoundFigure() throws Exception {

Member sender = new Member(“jbrains”, new BigDecimal(“1000.00”));

Member receiver = new Member(“sarah”, new BigDecimal(“250.00”));

FundsTransfer fundsTransfer = new FundsTransfer(

sender, receiver, new BigDecimal(“1000.00”));

BigDecimal actualFee = fundsTransfer.calculateFee();

assertEquals(new BigDecimal(“31.00”), actualFee);

}

}

public class CalculateTransferFeeTest extends TestCase {

private Member sender;

private Member receiver;

protected void setUp() throws Exception {

sender = new Member(“jbrains”, new BigDecimal(“1000.00”));

receiver = new Member(“sarah”, new BigDecimal(“250.00”));

}

public void testZeroAmount() throws Exception {

assertEquals(new BigDecimal(“2.00”),

calculateFee(new BigDecimal(“0.00”)));

}

public void testNiceRoundFigure() throws Exception {

assertEquals(new BigDecimal(“31.00”), calculateFee(new BigDecimal(

“1000.00”)));

}

public void testRequireRounding() throws Exception {

assertEquals(new BigDecimal(“6.56”), calculateFee(new BigDecimal(

“157.41”)));

assertEquals(new BigDecimal(“6.57”), calculateFee(new BigDecimal(

“157.42”)));

}

private BigDecimal calculateFee(BigDecimal amount) {

FundsTransfer fundsTransfer = new FundsTransfer(sender, receiver,

amount);

BigDecimal actualFee = fundsTransfer.calculateFee();

return actualFee;

}

}

Listing 2: Refactoring the tests
instead of the production code

Listing 1: Testing an
electronic funds transfer

Before...

public void testNiceRoundFigure() throws Exception {

Member sender = new Member(“jbrains”, new BigDecimal(“1000.00”));

Member receiver = new Member(“sarah”, new BigDecimal(“250.00”));

FundsTransfer fundsTransfer = new FundsTransfer(

sender, receiver, new BigDecimal(“1000.00”));

BigDecimal transactionFee = fundsTransfer.calculateFee();

assertEquals(new BigDecimal(“31.00”), transactionFee);

}

After...

public void testNiceRoundFigure() throws Exception {

FundsTransferFeeRule feeRule = new FundsTransferFeeRule();

BigDecimal transactionFee = feeRule.calculateFee(new BigDeci-

mal(“1000.00”));

assertEquals(new BigDecimal(“31.00”), transactionFee);

}

Injecting the fee rule through the constructor:

FundsTransferFeeRule feeRule = new FundsTransferFeeRule();

FundsTransfer fundsTransfer = new FundsTransfer(feeRule);

fundsTransfer.execute();

Injecting the fee rule through a “setter” method:

FundsTransferFeeRule feeRule = new FundsTransferFeeRule();

FundsTransfer fundsTransfer = new FundsTransfer();

fundsTransfer.setFeeRule(feeRule);

fundsTransfer.execute();

Injecting the fee rule through a method parameter:

FundsTransfer fundsTransfer = new FundsTransfer();

FundsTransferFeeRule feeRule = new FundsTransferFeeRule();

fundsTransfer.execute(feeRule);

Listing 3: Simpler tests for
calculating the transaction fee

Listing 4: The different
injection techniques

32 BETTER SOFTWARE APRIL 2005 www.StickyMinds.com

